ME - 331: Solid Mechanics — Institute of Mechanical Engineering
Series 6: March 25 2025

Exercise 1: A 50 mm thin square aluminum plate (Young’s modulus, £ =70GPa Poisson’s
ration v=0.3) is subjected to the stresses shown in the figure below. Calculate the change in
length, of the diagonal BD in two ways:

(a) Determine the strains with respect to x,, x, and employ the strain transformation equation.

(b) Determine the stresses with respect to x,,x, and use the Hook’s law.

A o,, =20MPa
4—1 I_» ,, =10MPa
“ 1 Oy Oy =0y = SMPa
e
022
Solution:

1: From the given stresses and geometry (thin plate), we have plane stress a plane stress state.
Thus,

1
&, :E(UH —vo,,)=17/E

1
€y ZE(J22 —vo, )=4/E

g, = HTV% —65/E

We use (for § =45° and BD = 0.05+/2 m)

ey =&,y =&, 5IN° O +e,, cos’ @ —2¢, sinf cosd
=& =4/E=>A, =¢,,BD=0283/E m

2: Apply equations

. + -
o, = 1% L % "% (o600 + 0, 8in 260 = 20MPa
2 2
. + -
0, = 0179 90" % (oe0p - 0, 8in 260 =10MPa
2 2

. | \ \
Then &, =E(a22 —vo,,)=4/E=>A,, =¢,BD=0283/E m
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Exercise 2: The plate shown in the figure is subjected to loads that produce the uniform stress at
the two ends. The long edges are placed between two rigid walls. Show that the following given
displacements are correct.

1—v? v(l+v
U =- ox, =0, u :(T)ons
X, A

o, e e pd e o
_’ 4_0 x
— > «—
—> > !
—> «—
_’ <

/ | =

I I I
Solution:
Stresses:

The plate is thin and no normal load is acting on it: = o0,; =0,; =0,, =0.

It also confined along the edge x, =+h: = ¢&,, =0

The plate is subjected to the following stresses:

0, =—0,, 0, =C,0,, =0, =0(c can be easily calculated by using the boundary conditions).

With these stresses, the equilibrium equations are is satisfied.

Strains:

1 1 y
& :E(O-n —V0,,), &, :E(Jzz —V0o,,), &y :_E(O-u +0,), &,=6,=0

v v 1 lo}
&, =0=>0, =vo,, =—vo,, &;= —E[—O'O —vao] :E(1+v)0'0, & :E(—O'O +v20'0) = —Eo(l—vz)
Displacements:
ou o lo
g“:a—x]‘ :>u1=Ielldx1=—E°(l—v2)jdxl+Cl=—E°(l—v2)xl+C1
_Ouy

\%
&, :>u3:_[833dx3:E(1+v)0'0x3+C3, £, =0 =u,=0

o,
Displacement boundary conditions:

u,=0 at x,=0 = (=0, u;=0 at x,=0 = (=0
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Exercise 3: A thin prismatic bar of specific weight » and constant cross section hangs
vertically (see Figure). Under the effect of its own weight, the displacement field is

X
2 /4
u,(x,,x,) = E(lea —x; —vxzz)

a ”A%Jﬂ:_%gw_ﬁ)%

Calculate the strain and stress components in the bar
and check the boundary conditions if they are verified.
L The elastic properties of the bar ( £,v ) are known and
e displacement and stress along the normal axis to the
bar are neglected.

X
Solution:
Strains
ou, y
&, =—=——2a-2x|==|a—x
T ox 2E[ ] [ ]
ou, vy
Epy =—/—=——7|a—X
2 0ox, E[ 1]
81221 %4_% :l _7VX2+]/VX2 =0
2| 0x, oOx, | 2 E E
Stress (plane stress)
Y y
On L_2[5M+Vgn]—l_vz{E{a_xﬂ—‘——(a—xﬂ}Zjia—xJ
E v vy
O =1C 2[522+V‘911]:1_v2 |:__(a_xl)+ Z (a_xl):|:0
E
Gh::I___gu::O
+v

Boundary conditions

0 0 0)(1
@x,=a=|t, |=|0 0 0(0|=0
0 0 0)l0
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t y(x,—a) 0 0}/ O
@x,=12h=|t, |= 0 0 0]|£1|=0
L 0 0 0)LO

Exercise 4: The thin cantilever beam is subjected to a uniform shear stress along the entire upper
surface as shown in the Figure.

L |

Determine if the following Airy stress function is appropriate for this problem.

1 xx2 xx2 Lx* Lx
D (x,x,) =ZTO (xlx2 — 1h2 — }1122 + h2 + h22 (a)
Solution
Biharmonic equation

o 1 (8 o«
ax 4\ h oh

2 4
;e _, _ o' ®)

-0 -0
ox; ox;'

oD _ l‘ro X - 2xx, 3)612622 N 2Lx, N 3L;c§
h h h h

~z
ox, 4
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o'd

7] =
OX,

0 (©)

h h

3 4
oD 1 0( 2 6x2j: o’e @

=—7
ox;ox, 4 Ox;0x;

From (a), (b) and (¢) weseethat V'®=0.

Stress components

o’®
= > = 0 5 O-ll = 3
Ox; Ox;

0-2 2

Boundary conditions
x,=h = 0,=0, o,=r,

x,=—h = o0,,=0,=0

1 2x, 3x?

The results show that the boundary conditions are satisfied at x, =+Abut not at x, = L. (The
surface x, = Lis free of stress while the analysis results in a non-zero stress). Thus, the Airy
stress function is not appropriate.
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Exercise 5: For the line load on a semi-infinite body (see Figure below)

1: Show that the stress function,

D(x,,x,) = —£x2 tan”' (&J
T

X

results in the following stress field at a point M in the body.

i l l /V/
l/ ) . gxz
(:) A (:’- \\\ _ :ZAZ:) JX&
< 11 o = —7 N NV
o)) 0y ;": (xl +x2)
.Mi 2P x1x22
—1> o, n =T 2
21 T 2 2
X vOou (xl +x2)
2P xle2
Op="""

T

2: on a plane at a distance x, = a consider the vertical sum of forces and show that equilibrium is

satisfied (Hint: consider the vertical equilibrium of a stripe of unit thickness).

+00 3
Note that: J;(a}j—x;)zdxz = %

Solution:

. cd . _df(x) 1
1: Note that : . tan” (/'(x)) dr 1/

2 2 2
aﬂz_f tanl(ﬁ]+( XX, 30_”232@__5 X, (xl +xz)xl—2x2x1

2 2 2 2
axz T (xl +x2) (x12+x§)

op

2
Vs 2 2
(x5 +x3)
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ob  Px, X, o = o’®  Px, —2x, 2P xx
= - = = =AMt
X, a ( ; ) oG ow (xl2 +X; )2 7 (xl2 + X )2

2 - 2
2, .2 7 (2, 2
(x5 +x3) (x5 +x3)

2. At a given distance from the free surface, along the vertical axis, the following force balance
should hold far per unit thickness of the body at a distance x, =a,

od  Px, X, O’Dd  P| —2x, (xf +x; ) - x; 21, 2P x'x,
~ = - =0, = = =
Oox, V4 ) /2

—+00 2P+°O 3
~-P= Iandxz e

2 2
2 2
4 7w(a +x2)

Indeed, the integral is equal to 7 /2 and thus, the equilibrium is verified.
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Problem 1: Solution

Note that the problem can be solved using cylindrical or Cartesian coordinates. Below both are
given.

I. Use cylindrical coordinates:
x,=rcosf; x,=rsin@; tan'x,/x, =0

The stress function becomes,
o(r,0)=cr’ [9—%sin 20} (a)

With the following derivatives:

6—(0 = 2cr[6’—%sin 26’}

or

2
Z = 2{9—%511120}
A
(b)
Z—Z =cr?[1-cos 26
2
2;2) =2cr?sin 26

2 2 B
vip=| L 10 1 0 s o-Lain20|+2¢|6-Lsin26 |+ 20sin20 = 4co
or- ror r-00 2 2

o 10 10
Viop=| —+——+— 4c0)=0+0+0=0
¢ [81’2 ror r*oo* ( ¢ )

The equation (a) can provide the solution.
Stress components:
Use the derivatives in (b)

2
Grr:la_(p-i_%a?;
ror roo00

2
= o 2c{¢9—%sin29}

O =
2
or’

= 2c[6’—%sin 2«9} +2¢sin 20 = c[26’+sin 26’]

——r =c[1—00520]—2c[1—cos2«9]=c[cos29—1]
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Boundary Conditions:

For #=00,=0,=0,=0 OK

For 0=r

. . 1 . 1 .
o, =c[20+sin20]=c[27 +sin27x]|=2c7; o0, =2¢ {0 ——sin 29} =2c |:7Z' ——sin 27[} =2crx
2 2

o,y =c[cos26—-1]=0

To calculate the constant c: for 0 =7 = o, =2cr=P=c=P/2n
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II. Use Cartesian coordinates:

X
q)(xl,xz)zc{(xl2 +x22)tan 1—z—xlxz}

X
Derivatives:
oD ax oo X
— =2x, tan”' =2 -2x, —=2x,tan' =%
X, X, Oox, X,
o’D X 2x,x o’D X 2x,x
=2tan 2oy 7= 2tan by
@ X (xl TX ) ox, X (x1 X )
o’® 4x, 4x]x, o’® 4x, 4x2x,

3 == + 2 3 = 2 2\ 2
ox; (xlz+x§) (x12+x22) ox, (xl +x2) (x,2+x22)
o'd 16x, x, 16x’x, o'd 16x, x, 16xx,

. 2 3 . 7t 3
ox) ()cl2 +x22) (xf +x22) ox, (xl2 +x§) (xl2 +x§)
o’® X 2x,x

- =2tan" 24—

Ox, X, (x1 +x2)
o’ 4xx,

2 - 2
Ox, 0x, (xf%—x;)

oo _ 8xx, N 16xx,

2A.2 2 3
Ox, 0x, (xl2 +x§) (xl2 +x22)

o'®d o'd o'® loxx, 16xx, _loxx, N 16xx, _loxx,

32xx,

ot * ot * O2ac: (2, w2\ 2, 2} 2, 2)? 2, 2} 2, 2)? 2, .2
X, X X, 0%, (x1 +x2) (x1 +x2) (x1 +x2) (x1 +x2) (x1 +x2) (x1 +x2)

3 3 3
lox,x,  léxx, N 32x; x, N 16x;x,
2 3 3
2 2 2 2 2 2 2 2
(F+x) (F+x5) (F+x) (5 +x)

16x, x, N —16xx, +32x)x, +16x3x,

3

2 3
(xl2 +x22) (x,2 +x§)
_ léxx, +16x13x2+16x§x1 _ 16x, x, +16x1x2(x12+x22)=_ 16x, x, N 16x, x,
2 2\? 2 2\? 2 2\? 2 2\’ 2 2\? 2 2)2
(2 +x3) (2 +x3) (2 +x3) (x5 +x) (+x3)  (x+x)
Stresses:

3

=0
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0’ - XX
0, =—5 =2c| tan” Z 4 2

0ox; X, (x1 +x2)

o’D X XX
0y =— =2c| tan” -2

¥ PR ey

o’ 0 X x;

o, =— =—c—| 2x, tan”' =2 -2x, |=2c -

Ox, Ox, ox, X, (x1 +x2)

Boundary conditions:
x,=0,Vx, = 0,,=0, x,=0,x, >0=>0, =0, x,=0,Vx, =0,=0

To calculate c. Consider the stress along x, =0, x;, <0

1 X X, X
=2c|tan ' 22— 12

2 2
X, X, (x1 +x2)

This stress is the only non-zero component. With x, =0 the second part in the parentheses is

X . I .
'Z2 =0, ... We consider the first non-zero value and equilibrium gives,
X,

1

zero and tan~

— 0, =2c(r)=P=c=P/2x.
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Problem 2: Solution

The stress state is that of plane stress. Consider OXY as the
principal system on which we define,

Principal stresses and Their orientation

If the two principal stress o, et o, are positive, the circle
deforms as shown in the Figure. A point M (X,Y) on the
circle moves to M'(X',Y") defined by,

1
X'=X+AX=(1+¢)X avec 81=E(GI—/J0'2)

1
Y'=Y+AY=(1+¢,)Y avec SZZE(O'z—,UO'l)

! 2 ! 2 12 12
From which X2+Y? = X + Y = R? ou X—2+Y—2:1
1+¢ 1+¢, A~ B

Points M' form an ellipse with semi-axes,

A=1+¢&)R et B=(1+¢&)R
AR, =A-R=¢gR AR, =B—-R =¢,R

Principal stresses:

o =Tt | GOy 12 1004250 = 350MPa
1 2 2
=0

o, = szf’x _\/(“x ;%)2 +7% =100—250 =—150MPa
.
1g2¢, :1—x = @, =18°26
E(Gx _O-))

Deformation: Using these stresses the strains and the changes in radii are,
0, =350 MPa and o, =-150 MPa ¢ =1.88-10" and ¢, =-1,21-10"

AR, =0,0188cm ; AR, =-0,0121cm
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